Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562445

ABSTRACT

With a single circulating vector-borne virus, the basic reproduction number incorporates contributions from tick-to-tick (co-feeding), tick-to-host and host-to-tick transmission routes. With two different circulating vector-borne viral strains, resident and invasive, and under the assumption that co-feeding is the only transmission route in a tick population, the invasion reproduction number depends on whether the model system of ordinary differential equations possesses the property of neutrality. We show that a simple model, with two populations of ticks infected with one strain, resident or invasive, and one population of co-infected ticks, does not have Alizon's neutrality property. We present model alternatives that are capable of representing the invasion potential of a novel strain by including populations of ticks dually infected with the same strain. The invasion reproduction number is analysed with the next-generation method and via numerical simulations.

2.
Sci Rep ; 12(1): 11289, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35789162

ABSTRACT

Lymphocyte populations, stimulated in vitro or in vivo, grow as cells divide. Stochastic models are appropriate because some cells undergo multiple rounds of division, some die, and others of the same type in the same conditions do not divide at all. If individual cells behave independently, then each cell can be imagined as sampling from a probability density of times to division and death. The exponential density is the most mathematically and computationally convenient choice. It has the advantage of satisfying the memoryless property, consistent with a Markov process, but it overestimates the probability of short division times. With the aim of preserving the advantages of a Markovian framework while improving the representation of experimentally-observed division times, we consider a multi-stage model of cellular division and death. We use Erlang-distributed (or, more generally, phase-type distributed) times to division, and exponentially distributed times to death. We classify cells into generations, using the rule that the daughters of cells in generation n are in generation [Formula: see text]. In some circumstances, our representation is equivalent to established models of lymphocyte dynamics. We find the growth rate of the cell population by calculating the proportions of cells by stage and generation. The exponent describing the late-time cell population growth, and the criterion for extinction of the population, differs from what would be expected if N steps with rate [Formula: see text] were equivalent to a single step of rate [Formula: see text]. We link with a published experimental dataset, where cell counts were reported after T cells were transferred to lymphopenic mice, using Approximate Bayesian Computation. In the comparison, the death rate is assumed to be proportional to the generation and the Erlang time to division for generation 0 is allowed to differ from that of subsequent generations. The multi-stage representation is preferred to a simple exponential in posterior distributions, and the mean time to first division is estimated to be longer than the mean time to subsequent divisions.


Subject(s)
Models, Biological , Waiting Lists , Animals , Bayes Theorem , Female , Markov Chains , Mice , Parturition , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...